Modeling bioprocess scale-up utilizing regularized linear and logistic regression

Muhammad Farhan, Antti Larjo, Olli Yli-Harja, Tommi Aho

    Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference contributionScientificvertaisarvioitu

    Abstrakti

    Bioprocess scale-up from optimized flask cultivations to large industrial fermentations carries technical challenges and economical risks. Essentially, the prediction of optimal process conditions in large fermentations based on small scale experiments is non-trivial. For example, common statistical methods encounter problems with the high-dimensional, small sample size and, on the other hand, the use of various scale-up criteria requires a priori knowledge that may be difficult to obtain. We propose a novel computational scale-up approach applicable to various bioprocesses. The method bases on regularized linear and logistic regression. With embedded feature selection, it automatically identifies the most influential parameters and predicts their values in large scale. In addition, the method predicts the resulting large scale yield. As a case study, we examined the production of a cytotoxic compound. We predicted scale-up from flask and 2L to 30L fermentations and found that, in both cases, the product yield predictions are close to experimentally observed yields.

    AlkuperäiskieliEnglanti
    Otsikko2013 IEEE International Workshop on Machine Learning for Signal Processing - Proceedings of MLSP 2013
    DOI - pysyväislinkit
    TilaJulkaistu - 2013
    OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
    TapahtumaIEEE International Workshop on Machine Learning for Signal Processing - Southampton, Iso-Britannia
    Kesto: 22 syyskuuta 201325 syyskuuta 2013
    Konferenssinumero: 16

    Workshop

    WorkshopIEEE International Workshop on Machine Learning for Signal Processing
    LyhennettäMLSP
    MaaIso-Britannia
    KaupunkiSouthampton
    Ajanjakso22/09/201325/09/2013

    Sormenjälki Sukella tutkimusaiheisiin 'Modeling bioprocess scale-up utilizing regularized linear and logistic regression'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä