Model reduction and level set methods for shape optimization problems

Julkaisun otsikon käännös: Model reduction and level set methods for shape optimization problems

Toni Lassila

Tutkimustuotos: Doctoral ThesisCollection of Articles

Abstrakti

In this work two topics related to mathematical shape optimization are considered. Topological optimization methods need not know the correct topology (number of connected components and possible holes) of the optimal shape beforehand. Shape optimization can be performed by a topological gradient descent algorithm. Computational applications of topological optimization and level set based shape optimization involve the optimal damping of vibrating structures and an inverse problem of reconstructing a shape based on noisy interferogram measurements. For parametric shape optimization with partial differential constraints the model reduction approach of reduced basis methods is considered. In the reduced basis method a basis of snapshot solutions is used to construct a problem-dependent approximation space that has much smaller dimension than the underlying finite element approximations. The state constraints for optimization are then replaced with their reduced basis approximation, leading to efficient shape optimization methods. Computational examples involve the optimal engineering design of airfoils in potential and thermal flow.
Julkaisun otsikon käännösModel reduction and level set methods for shape optimization problems
AlkuperäiskieliEnglanti
PätevyysTohtorintutkinto
Myöntävä instituutio
  • Aalto-yliopisto
Valvoja/neuvonantaja
  • Eirola, Timo, Vastuuprofessori
Kustantaja
Painoksen ISBN978-952-60-3401-0
Sähköinen ISBN978-952-60-3402-7
TilaJulkaistu - 2010
OKM-julkaisutyyppiG5 Artikkeliväitöskirja

Sormenjälki

Sukella tutkimusaiheisiin 'Model reduction and level set methods for shape optimization problems'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä