Model-Based Online Learning for Resource Sharing in Joint Radar-Communication Systems

Petteri Pulkkinen*, Visa Koivunen

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

5 Sitaatiot (Scopus)
92 Lataukset (Pure)

Abstrakti

The ever-increasing congestion in the radio spectrum has made coexistence and co-design for radar and communication systems an important problem to address. The radio spectrum is a rapidly time-frequency-space varying resource, and learning is required to use the spectrum and mitigate the interference. This paper proposes a model-based online learning (MBOL) framework to enable a structured way to formulate efficient online learning algorithms for resource sharing in joint radar-communication (JRC) systems. As an example, we apply the MBOL framework for allocating frequency resources in non-cooperative shared spectrum scenarios. The proposed MBOL algorithm learns a predictive model using online convex optimization (OCO) and chooses the best frequency channels in uncertain interference environments. The algorithm outperforms the considered baseline algorithms in terms of regret that quantifies the cost of learning.

AlkuperäiskieliEnglanti
Otsikko2022 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 - Proceedings
KustantajaIEEE
Sivut4103-4107
Sivumäärä5
ISBN (elektroninen)978-1-6654-0540-9
DOI - pysyväislinkit
TilaJulkaistu - 2022
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE International Conference on Acoustics, Speech, and Signal Processing - Singapore, Singapore
Kesto: 23 toukok. 202227 toukok. 2022

Julkaisusarja

NimiIEEE International Conference on Acoustics, Speech and Signal Processing
Vuosikerta2022-May
ISSN (painettu)1520-6149

Conference

ConferenceIEEE International Conference on Acoustics, Speech, and Signal Processing
LyhennettäICASSP
Maa/AlueSingapore
KaupunkiSingapore
Ajanjakso23/05/202227/05/2022

Sormenjälki

Sukella tutkimusaiheisiin 'Model-Based Online Learning for Resource Sharing in Joint Radar-Communication Systems'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä