Model-Based Online Learning For Active ISAC Waveform Optimization

Petteri Pulkkinen, Visa Koivunen

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

Abstrakti

This paper proposes a Model-Based Online Learning (MBOL) framework for waveform optimization in integrated sensing and communications (ISAC) systems. In particular, the MBOL framework is proposed to enhance the ISAC performance under dynamic environmental conditions. Unlike Model-Free Online Learning (MFOL) methods, our approach leverages a rich structural knowledge of sensing, communications, and radio environments, offering better explainability and sample efficiency. This paper establishes a theoretical analysis of the proposed class of MBOL methods, showing essential performance conditions and convergence rates. This theoretical analysis is critical for understanding the potential of MBOL in active waveform optimization tasks. We demonstrate the proposed MBOL framework in multicarrier ISAC systems, focusing on the sub-carrier selection and power allocation problem. Via numerical experiments, we show that the proposed MBOL method outperforms the MFOL method in terms of sample efficiency. The results underline the potential of MBOL for improving the active waveform optimization performance in ISAC systems, particularly when sample efficiency and explainability are critical.

AlkuperäiskieliEnglanti
Sivut1-15
Sivumäärä15
JulkaisuIEEE Journal on Selected Topics in Signal Processing
DOI - pysyväislinkit
TilaSähköinen julkaisu (e-pub) ennen painettua julkistusta - 8 huhtik. 2024
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Model-Based Online Learning For Active ISAC Waveform Optimization'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä