Model-Based Deep Learning for Beam Prediction Based on a Channel Chart

Taha Yassine, Baptiste Chatelier, Vincent Corlay, Matthieu Crussiere, Stephane Paquelet, Olav Tirkkonen, Luc Le Magoarou

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

5 Sitaatiot (Scopus)

Abstrakti

Channel charting builds a map of the radio environment in an unsupervised way. The obtained chart locations can be seen as low-dimensional compressed versions of channel state information that can be used for a wide variety of applications, including beam prediction. In non-standalone or cell-free systems, chart locations computed at a given base station can be transmitted to several other base stations (possibly operating at different frequency bands) for them to predict which beams to use. This potentially yields a dramatic reduction of the overhead due to channel estimation or beam management, since only the base station performing charting requires channel state information, the others directly predicting the beam from the chart location. In this paper, advanced model-based neural network architectures are proposed for both channel charting and beam prediction. The proposed methods are assessed on realistic synthetic channels, yielding promising results.

AlkuperäiskieliEnglanti
OtsikkoConference Record of the 57th Asilomar Conference on Signals, Systems and Computers, ACSSC 2023
ToimittajatMichael B. Matthews
KustantajaIEEE
Sivut1636-1640
Sivumäärä5
ISBN (elektroninen)979-8-3503-2574-4
DOI - pysyväislinkit
TilaJulkaistu - 1 huhtik. 2024
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaAsilomar Conference on Signals, Systems and Computers - Pacific Grove, Yhdysvallat
Kesto: 29 lokak. 20231 marrask. 2023

Julkaisusarja

NimiConference Record - Asilomar Conference on Signals, Systems and Computers
ISSN (painettu)1058-6393

Conference

ConferenceAsilomar Conference on Signals, Systems and Computers
LyhennettäACSSC
Maa/AlueYhdysvallat
KaupunkiPacific Grove
Ajanjakso29/10/202301/11/2023

Sormenjälki

Sukella tutkimusaiheisiin 'Model-Based Deep Learning for Beam Prediction Based on a Channel Chart'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä