Mobile disks in hyperbolic space and minimization of conformal capacity

Harri Hakula, Mohamed M.S. Nasser, Matti Vuorinen

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

Abstrakti

Our focus is to study constellations of disjoint disks in the hyperbolic space, i.e., the unit disk equipped with the hyperbolic metric. Each constellation corresponds to a set E which is the union of m > 2 disks with hyperbolic radii rj > 0, j = 1, . . ., m. The centers of the disks are not fixed, and hence individual disks of the constellation are allowed to move under the constraints that they do not overlap and their hyperbolic radii remain invariant. Our main objective is to find computational lower bounds for the conformal capacity of a given constellation. The capacity depends on the centers and radii in a very complicated way even in the simplest cases when m = 3 or m = 4. In the absence of analytic methods, our work is based on numerical simulations using two different numerical methods, the boundary integral equation method and the hp-FEM method, respectively. Our simulations combine capacity computation with minimization methods and produce extremal cases where the disks of the constellation are grouped next to each other. This resembles the behavior of animal colonies minimizing heat flow in arctic areas.

AlkuperäiskieliEnglanti
Sivut1-19
Sivumäärä19
JulkaisuElectronic Transactions on Numerical Analysis
Vuosikerta60
DOI - pysyväislinkit
TilaJulkaistu - 2024
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Mobile disks in hyperbolic space and minimization of conformal capacity'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä