mMTC Deployment over Sliceable Infrastructure: The Megasense Scenario

Naser Hossein Motlagh, Ibrahim Afolabi, Matteo Pozza, Miloud Bagaa, Tarik Taleb, Sasu Tarkoma, Hannu Flinck

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

7 Sitaatiot (Scopus)
83 Lataukset (Pure)

Abstrakti

Massive Machine Type Communication (mMTC) has long been identified as a major vertical sector and enabler of the industry 4.0 technological evolution that will seamlessly ease the dynamics of machine-to-machine communications while leveraging 5G technology. To advance this concept, we have developed and tested an mMTC network slice called Megasense. Megasense is a complete framework that consists of multiple software modules, which is used for collecting and analyzing air pollution data that emanates from a massive amount of air pollution sensors. Taking advantage of 5G networks, Megasense will significantly benefit from an underlying communication network that is traditionally elastic and can accommodate the on-demand changes in requirements of such a use case. As a result, deploying the sensor nodes over a sliceable 5G system is deemed the most appropriate in satisfying the resource requirements of such a use case scenario. In this light, in order to verify how 5G-ready our Megasense solution is, we deployed it over a network slice that is totally composed of virtual resources. We have also evaluated the impact of the network slicing platform on Megasense in terms of bandwidth and resource utilization. We further tested the performances of the Megasense system and come up with different deployment recommendations based on which the Megasense system would function optimally.

AlkuperäiskieliEnglanti
Sivut247-254
Sivumäärä8
JulkaisuIEEE Network
Vuosikerta35
Numero6
Varhainen verkossa julkaisun päivämäärä2021
DOI - pysyväislinkit
TilaJulkaistu - 2021
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'mMTC Deployment over Sliceable Infrastructure: The Megasense Scenario'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.
  • IDEA-MILL: Industrial Distributed Edge Architecture over Machine Intelligence for Local Learning

    Taleb, T. (Vastuullinen tutkija)

    01/01/202131/12/2021

    Projekti: Academy of Finland: Other research funding

  • 5G-FORCE-Taleb

    Taleb, T. (Vastuullinen tutkija), Addad, R. (Projektin jäsen), Amor, A. (Projektin jäsen), Afolabi, I. (Projektin jäsen), Khennouche, H. (Projektin jäsen), Kerfah, I. (Projektin jäsen) & Batouche, A. (Projektin jäsen)

    01/01/201931/03/2021

    Projekti: Business Finland: Other research funding

Siteeraa tätä