Abstrakti
The multiplicative Rayleigh noise model has been used for maximum likelihood (ML) motion estimation in ultrasound imaging (UI). In this work, we introduce new robust similarity measures that take into account the deviations from the Rayleigh statistics resulting, for example, from multiple scatterings or acquisition artefacts. Specifically, the t-distribution is used for modelling the radio-frequency (RF) signals and the Nakagami-Gamma (NG) model is used for the echo amplitudes. Experiments using in vivo images of the carotid artery show an improvement in motion estimation accuracy in comparison with the similarity measure based on the classical Rayleigh model.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | 2019 IEEE 8th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, CAMSAP 2019 - Proceedings |
Kustantaja | IEEE |
Sivut | 366-370 |
Sivumäärä | 5 |
ISBN (elektroninen) | 9781728155494 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 1 jouluk. 2019 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisuussa |
Tapahtuma | IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing - Guadeloupe, Le Gosier, Guadeloupe Kesto: 15 jouluk. 2019 → 18 jouluk. 2019 Konferenssinumero: 18 https://camsap19.ig.umons.ac.be |
Workshop
Workshop | IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing |
---|---|
Lyhennettä | CAMSAP |
Maa/Alue | Guadeloupe |
Kaupunki | Le Gosier |
Ajanjakso | 15/12/2019 → 18/12/2019 |
www-osoite |