MixupE: Understanding and improving Mixup from directional derivative perspective

Yingtian Zou, Vikas Verma, Sarthak Mittal, Wai Hoh Tang, Hieu Pham, Juho Kannala, Yoshua Bengio, Arno Solin, Kenji Kawaguchi

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

39 Lataukset (Pure)

Abstrakti

Mixup is a popular data augmentation technique for training deep neural networks where additional samples are generated by linearly interpolating pairs of inputs and their labels. This technique is known to improve the generalization performance in many learning paradigms and applications. In this work, we first analyze Mixup and show that it implicitly regularizes infinitely many directional derivatives of all orders. Based on this new insight, we propose an improved version of Mixup, theoretically justified to deliver better generalization performance than the vanilla Mixup. To demonstrate the effectiveness of the proposed method, we conduct experiments across various domains such as images, tabular data, speech, and graphs. Our results show that the proposed method improves Mixup across multiple datasets using a variety of architectures, for instance, exhibiting an improvement over Mixup by 0.8% in ImageNet top-1 accuracy.
AlkuperäiskieliEnglanti
OtsikkoProceedings of the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023)
KustantajaJMLR
Sivut2597-2607
TilaJulkaistu - elok. 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaConference on Uncertainty in Artificial Intelligence - Pittsburgh, Yhdysvallat
Kesto: 31 heinäk. 20234 elok. 2023
Konferenssinumero: 39

Julkaisusarja

NimiProceedings of Machine Learning Research
KustantajaPMLR
Vuosikerta216
ISSN (painettu)2640-3498

Conference

ConferenceConference on Uncertainty in Artificial Intelligence
LyhennettäUAI
Maa/AlueYhdysvallat
KaupunkiPittsburgh
Ajanjakso31/07/202304/08/2023

Sormenjälki

Sukella tutkimusaiheisiin 'MixupE: Understanding and improving Mixup from directional derivative perspective'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä