Abstrakti
We develop a microspectral theory for quasinilpotent linear operators Q (i.e., those with σ(Q)={0}) in a Banach space. For such operators, the classical spectral theory gives little information. Deeper structure can be obtained from microspectral sets in C as defined below. Such sets describe, e.g., semigroup generation, various resolvent properties, power boundedness as well as Tauberian properties associated to zQ for z∈C.
Alkuperäiskieli | Englanti |
---|---|
Sivut | 281-306 |
Julkaisu | BANACH CENTER PUBLICATIONS |
Vuosikerta | 112 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2017 |
OKM-julkaisutyyppi | A1 Julkaistu artikkeli, soviteltu |