Metric Learning based Positioning

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

102 Lataukset (Pure)

Abstrakti

We predict the physical distance between two users based on the Channel State Information (CSI) of wireless channels. The CSI of each user is measured at several multiantenna base stations. We consider a supervised metric learning framework using a neural network that ensures that the properties of a metric are fulfilled: zero distance between a point and itself, non-negativity, symmetry, and the triangle inequality. The training data set consists of CSI from pairs of points and their physical distance. As an example use case, we consider fingerprint localization, where creating large datasets is impractical. The metric can be learned from a small dataset because the number of training data pairs increases quadratically in the number of CSI-fingerprints. We use the learned metric for Weighted K-Nearest Neighbor (WKNN) localization, to find neighbors in the dataset and to compute the weighting vector. Simulation results show that the 80th percentile error can be improved by some 70 % using the learned metric as compared to the Euclidean distance for WKNN regression.
AlkuperäiskieliEnglanti
OtsikkoProceedings of the IEEE Wireless Communications and Networking Conference
KustantajaIEEE
Sivumäärä6
ISBN (elektroninen)979-8-3503-6836-9
DOI - pysyväislinkit
TilaJulkaistu - 2025
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE Wireless Communications and Networking Conference - Milan, Italia
Kesto: 24 maalisk. 202527 maalisk. 2025

Conference

ConferenceIEEE Wireless Communications and Networking Conference
LyhennettäWCNC
Maa/AlueItalia
KaupunkiMilan
Ajanjakso24/03/202527/03/2025

Sormenjälki

Sukella tutkimusaiheisiin 'Metric Learning based Positioning'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä