Abstrakti
A family of supramolecular cage molecules has been obtained via self-assembly of the phosphine-gold coordination complexes following an aurophilicity-driven aggregation approach. Use of the di-(PP) or tridentate (PPP) phosphine ligands P-n (n = 2, 3) with rigid polyaromatic backbones leads to clean formation of the coordination P-n(Au(tht))(n)(n+) species, sequential treatment of which with H2O/NEt3 and excess of H2NBut gives the finite 3D structures of two major types. The cylindrical-like hexametallic cages [(PPAu2)(3)(mu(3)-NBut)(2)](2+) are based on the diphosphines PP = 1,4-bis(diphenylphosphino) benzene (1), 4,4'bis(diphenylphosphino) biphenyl (2), 4,4''-bis(diphenylphosphino) terphenyl (3), while the triphosphine PPP (1,3,5-tris(diphenylphosphinophenyl) benzene) produces a tetrahedral dodecagold complex [(PPPAu3)(4)-(mu(3)-NBut)(4)](4+) (4). The cages 1-4 have been studied using the ESI-MS and H-1, P-31 NMR spectroscopy, and the crystal structures of 1 and 4 were determined by an X-ray diffraction study. The NMR spectroscopic investigations showed that cylindrical complexes 1-3 undergo twisting-like interconversion of the helical P M isomers in solution, while 4 is a stereochemically rigid compound retaining its axially chiral architecture. The difference in dynamic behavior was rationalized using computational studies with density functional methods.
Alkuperäiskieli | Englanti |
---|---|
Sivut | 6236-6243 |
Sivumäärä | 8 |
Julkaisu | Dalton Transactions |
Vuosikerta | 43 |
Numero | 16 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2014 |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä |