MeSHLabeler and DeepMeSH: Recent progress in large-scale MeSH indexing

Shengwen Peng, Hiroshi Mamitsuka, Shanfeng Zhu*

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaChapterScientificvertaisarvioitu

1 Sitaatiot (Scopus)

Abstrakti

The US National Library of Medicine (NLM) uses the Medical Subject Headings (MeSH) (seeNote 1) to index almost all 24 million citations in MEDLINE, which greatly facilitates the application of biomedical information retrieval and text mining. Large-scale automatic MeSH indexing has two challenging aspects: the MeSH side and citation side. For the MeSH side, each citation is annotated by only 12 (on average) out of all 28,000 MeSH terms. For the citation side, all existing methods, including Medical Text Indexer (MTI) by NLM, deal with text by bag-of-words, which cannot capture semantic and context-dependent information well. To solve these two challenges, we developed the MeSHLabeler and DeepMeSH. By utilizing “learning to rank” (LTR) framework, MeSHLabeler integrates multiple types of information to solve the challenge in the MeSH side, while DeepMeSH integrates deep semantic representation to solve the challenge in the citation side. MeSHLabeler achieved the first place in both BioASQ2 and BioASQ3, and DeepMeSH achieved the first place in both BioASQ4 and BioASQ5 challenges. DeepMeSH is available at http://datamining-iip.fudan.edu.cn/deepmesh.

AlkuperäiskieliEnglanti
OtsikkoMethods in Molecular Biology
Sivut203-209
Sivumäärä7
ISBN (elektroninen)978-1-4939-8561-6
DOI - pysyväislinkit
TilaJulkaistu - 1 tammikuuta 2018
OKM-julkaisutyyppiA3 Kirjan osa tai toinen tutkimuskirja

Julkaisusarja

NimiMethods in Molecular Biology
KustantajaHumana Press
Vuosikerta1807
ISSN (painettu)1064-3745

Sormenjälki

Sukella tutkimusaiheisiin 'MeSHLabeler and DeepMeSH: Recent progress in large-scale MeSH indexing'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä