MEG and EEG data analysis with MNE-Python

A Gramfort, M Luessi, E Larson, D.A Engemann, D Strohmeier, C. Brodbeck, R Goj, M Jas, T Brooks, L Parkkonen, M. Hämäläinen

    Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

    348 Sitaatiot (Scopus)
    526 Lataukset (Pure)

    Abstrakti

    Magnetoencephalography and electroencephalography (M/EEG) measure the weak electromagnetic signals generated by neuronal activity in the brain. Using these signals to characterize and locate neural activation in the brain is a challenge that requires expertise in physics, signal processing, statistics, and numerical methods. As part of the MNE software suite, MNE-Python is an open-source software package that addresses this challenge by providing state-of-the-art algorithms implemented in Python that cover multiple methods of data preprocessing, source localization, statistical analysis, and estimation of functional connectivity between distributed brain regions. All algorithms and utility functions are implemented in a consistent manner with well-documented interfaces, enabling users to create M/EEG data analysis pipelines by writing Python scripts. Moreover, MNE-Python is tightly integrated with the core Python libraries for scientific comptutation (NumPy, SciPy) and visualization (matplotlib and Mayavi), as well as the greater neuroimaging ecosystem in Python via the Nibabel package. The code is provided under the new BSD license allowing code reuse, even in commercial products. Although MNE-Python has only been under heavy development for a couple of years, it has rapidly evolved with expanded analysis capabilities and pedagogical tutorials because multiple labs have collaborated during code development to help share best practices. MNE-Python also gives easy access to preprocessed datasets, helping users to get started quickly and facilitating reproducibility of methods by other researchers. Full documentation, including dozens of examples, is available at http://martinos.org/mne.
    AlkuperäiskieliEnglanti
    Artikkeli267
    Sivut1-13
    JulkaisuFrontiers in Neuroscience
    Vuosikerta7
    DOI - pysyväislinkit
    TilaJulkaistu - 2013
    OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

    Tutkimusalat

    • electroencephalography (EEG)
    • magnetoencephalography (MEG)
    • neuroimaging
    • open-source
    • python
    • software

    Sormenjälki Sukella tutkimusaiheisiin 'MEG and EEG data analysis with MNE-Python'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

  • Laitteet

  • Siteeraa tätä

    Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C., ... Hämäläinen, M. (2013). MEG and EEG data analysis with MNE-Python. Frontiers in Neuroscience, 7, 1-13. [267]. https://doi.org/10.3389/fnins.2013.00267