Measuring mechanical cues for modeling the stromal matrix in 3D cell cultures

Linda Srbova, Ossi Arasalo, Arttu J. Lehtonen, Juho Pokki*

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

29 Lataukset (Pure)

Abstrakti

A breast-cancer tumor develops within a stroma, a tissue where a complex extracellular matrix surrounds cells, mediating the cancer progression through biomechanical and -chemical cues. Current materials partially mimic the stromal matrix in 3D cell cultures but methods for measuring the mechanical properties of the matrix at cell-relevant-length scales and stromal-stiffness levels are lacking. Here, to address this gap, we developed a characterization approach that employs probe-based microrheometry and Bayesian modeling to quantify length-scale-dependent mechanics and mechanical heterogeneity as in the stromal matrix. We examined the interpenetrating network (IPN) composed of alginate scaffolds (for adjusting mechanics) and type-1 collagen (a stromal-matrix constituent). We analyzed viscoelasticity: absolute-shear moduli (stiffness/elasticity) and phase angles (viscous and elastic characteristics). We determined the relationship between microrheometry and rheometry information. Microrheometry reveals lower stiffness at cell-relevant scales, compared to macroscale rheometry, with dependency on the length scale (10 to 100 μm). These data show increasing IPN stiffness with crosslinking until saturation (≃15 mM of Ca2+). Furthermore, we report that IPN stiffness can be adjusted by modulating collagen concentration and interconnectivity (by polymerization temperature). The IPNs are heterogeneous structurally (in SEM) and mechanically. Interestingly, increased alginate crosslinking changes IPN heterogeneity in stiffness but not in phase angle, until the saturation. In contrast, such changes are undetectable in alginate scaffolds. Our nonlinear viscoelasticity analysis at tumor-cell-exerted strains shows that only the softer IPNs stiffen with strain, like the stromal-collagen constituent. In summary, our approach can quantify the stromal-matrix-related viscoelasticity and is likely applicable to other materials in 3D culture.

AlkuperäiskieliEnglanti
Sivut3483-3498
Sivumäärä16
JulkaisuSoft Matter
Vuosikerta20
Numero16
Varhainen verkossa julkaisun päivämäärä8 huhtik. 2024
DOI - pysyväislinkit
TilaJulkaistu - 8 huhtik. 2024
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Measuring mechanical cues for modeling the stromal matrix in 3D cell cultures'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.
  • R2B-IMMUNATE: R2B-IMMUNATE

    Kyyrä, J. (Vastuullinen tutkija), Arasalo, O. (Projektin jäsen), Aryal, U. (Projektin jäsen), Lanens, S. (Projektin jäsen), Lehtonen, A. (Projektin jäsen), Kielosto, M. (Projektin jäsen), Mäntylä, V. (Projektin jäsen) & Srbova, L. (Projektin jäsen)

    01/01/202131/12/2022

    Projekti: Business Finland: New business from research ideas (TUTLI)

Siteeraa tätä