Maximum Likelihood Estimation of Toric Fano Varieties

Dimitra Kosta, Kaie Kubjas, Carlos Améndola

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

Abstrakti

We study the maximum likelihood estimation problem for several classes of toric Fano models. We start by exploring the maximum likelihood degree for all $2$-dimensional Gorenstein toric Fano varieties. We show that the ML degree is equal to the degree of the surface in every case except for the quintic del Pezzo surface with two ordinary double points and provide explicit expressions that allow one to compute the maximum likelihood estimate in closed form whenever the ML degree is less than 5. We then explore the reasons for the ML degree drop using $A$-discriminants and intersection theory. Finally, we show that toric Fano varieties associated to 3-valent phylogenetic trees have ML degree one and provide a formula for the maximum likelihood estimate. We prove it as a corollary to a more general result about the multiplicativity of ML degrees of codimension zero toric fiber products, and it also follows from a connection to a recent result about staged trees.
AlkuperäiskieliEnglanti
Sivut5-30
Sivumäärä28
JulkaisuAlgebraic Statistics
Vuosikerta11
Numero1
DOI - pysyväislinkit
TilaJulkaistu - 1 lokak. 2020
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Maximum Likelihood Estimation of Toric Fano Varieties'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä