Maximum Likelihood Estimation of the Latent Class Model through Model Boundary Decomposition

Elizabeth S. Allman, Hector Banos, Robin Evans, Serkan Hosten*, Kaie Kubjas, Daniel Lemke, John A. Rhodes, Piotr Zwiernik

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

185 Lataukset (Pure)

Abstrakti

The Expectation-Maximization (EM) algorithm is routinely used for maximum likelihood estimation in latent class analysis. However, the EM algorithm comes with no global guarantees of reaching the global optimum. We study the geometry of the latent class model in order to understand the behavior of the maximum likelihood estimator. In particular, we characterize the boundary stratification of the binary latent class model with a binary hidden variable. For small models, such as for three binary observed variables, we show that this stratification allows exact computation of the maximum likelihood estimator. In this case we use simulations to study the maximum likelihood estimation attraction basins of the various strata and performance of the EM algorithm. Our theoretical study is complemented with a careful analysis of the EM fixed point ideal which provides an alternative method of studying the boundary stratification and maximizing the likelihood function. In particular, we compute the minimal primes of this ideal in the case of a binary latent class model with a binary or ternary hidden random variable.

AlkuperäiskieliEnglanti
Sivut51-84
Sivumäärä34
JulkaisuJournal of Algebraic Statistics
Vuosikerta10
Numero1
DOI - pysyväislinkit
TilaJulkaistu - 2019
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Maximum Likelihood Estimation of the Latent Class Model through Model Boundary Decomposition'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä