Matrix-weighted Besov-type and Triebel–Lizorkin-type spaces III : characterizations of molecules and wavelets, trace theorems, and boundedness of pseudo-differential operators and Calderón–Zygmund operators

Fan Bu, Tuomas Hytönen, Dachun Yang*, Wen Yuan

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

5 Sitaatiot (Scopus)

Abstrakti

This is the last one of three successive articles by the authors on matrix-weighted Besov-type and Triebel–Lizorkin-type spaces B˙p,qs,τ(W) and F˙p,qs,τ(W). In this article, the authors establish the molecular and the wavelet characterizations of these spaces. Furthermore, as applications, the authors obtain the optimal boundedness of trace operators, pseudo-differential operators, and Calderón–Zygmund operators on these spaces. Due to the sharp boundedness of almost diagonal operators on their related sequence spaces obtained in the second article of this series, all results presented in this article improve their counterparts on matrix-weighted Besov and Triebel–Lizorkin spaces B˙p,qs(W) and F˙p,qs(W). In particular, even when reverting to the boundedness of Calderón–Zygmund operators on unweighted Triebel–Lizorkin spaces F˙p,qs, these results are still better.

AlkuperäiskieliEnglanti
Artikkeli32
JulkaisuMathematische Zeitschrift
Vuosikerta308
Numero2
DOI - pysyväislinkit
TilaJulkaistu - 15 syysk. 2024
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Matrix-weighted Besov-type and Triebel–Lizorkin-type spaces III : characterizations of molecules and wavelets, trace theorems, and boundedness of pseudo-differential operators and Calderón–Zygmund operators'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä