Abstrakti
Motivated by recent proposals to realize Majorana bound states in chains and arrays of magnetic atoms deposited on top of a superconductor, we study the topological properties of various chain structures, ladders, and two-dimensional arrangements exhibiting magnetic helices. We show that magnetic domain walls where the chirality of a magnetic helix is inverted support two protected Majorana states giving rise to a tunneling conductance peak twice the height of a single Majorana state. The topological properties of coupled chains exhibit nontrivial behavior as a function of the number of chains beyond the even-odd dichotomy expected from the simple Z2 nature of coupled Majorana states. In addition, it is possible that a ladder of two or more coupled chains exhibit Majorana edge states even when decoupled chains are trivial. We formulate a general criterion for the number of Majorana edge states in multichain ladders and discuss some experimental consequences of our findings.
Alkuperäiskieli | Englanti |
---|---|
Artikkeli | 115109 |
Sivut | 1-7 |
Julkaisu | Physical Review B |
Vuosikerta | 89 |
Numero | 11 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2014 |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä |