Magnitude-Preserving Ranking for Structured Outputs

Celine Brouard, Eric Bach, Sebastian Böcker, Juho Rousu

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

51 Lataukset (Pure)

Abstrakti

In this paper, we present a novel method for solving structured prediction problems, based on combining Input Output Kernel Regression (IOKR) with an extension of magnitude-preserving ranking to structured output spaces. In particular, we concentrate on the case where a set of candidate outputs has been given, and the associated pre-image problem calls for ranking the set of candidate outputs. Our method, called magnitude-preserving IOKR, both aims to produce a good approximation of the output feature vectors, and to preserve the magnitude differences of the output features in the candidate sets. For the case where the candidate set does not contain corresponding ’correct’ inputs, we propose a method for approximating the inputs through application of IOKR in the reverse direction. We apply our method to two learning problems: cross-lingual document retrieval and metabolite identification. Experiments show that the proposed approach improves performance over IOKR, and in the latter application obtains the current state-of-the-art accuracy.
AlkuperäiskieliEnglanti
OtsikkoProceedings of the Ninth Asian Conference on Machine Learning
ToimittajatMin-Ling Zhang, Yung-Kyun Noh
KustantajaJMLR
Sivut407-422
Sivumäärä16
TilaJulkaistu - 3 marrask. 2017
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaAsian Conference on Machine Learning - Yonsei University, Seoul, Korea, Seoul, Etelä-Korea
Kesto: 15 marrask. 201717 marrask. 2017
Konferenssinumero: 9
http://www.acml-conf.org/2017/

Julkaisusarja

NimiProceedings of Machine Learning Research
KustantajaPMLR
Vuosikerta77
ISSN (elektroninen)1938-7228

Conference

ConferenceAsian Conference on Machine Learning
LyhennettäACML
Maa/AlueEtelä-Korea
KaupunkiSeoul
Ajanjakso15/11/201717/11/2017
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'Magnitude-Preserving Ranking for Structured Outputs'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä