Machine vision estimates the polyester content in recyclable waste textiles

Mikko Mäkelä*, Marja Rissanen, Herbert Sixta

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

51 Sitaatiot (Scopus)
209 Lataukset (Pure)

Abstrakti

Global textile production is mainly based on polyester and cotton fibers. A majority of textiles at the end of their lifecycle are currently landfilled or incinerated, but will be increasingly recycled in the future. Here, we discuss how the polyester content in blended textiles can be estimated based on hyperspectral near infrared imaging with the aim of developing machine vision for textile characterization and recycling. Differences in the textile samples were first visualized based on a principal component model and the polyester contents of individual image pixels were then predicted using image regression. The results showed average prediction errors of 2.2-4.5% within a range of 0-100% polyester and enabled visualizing the spatial changes in the polyester contents of the textiles. We foresee that digitalized tools similar to what we report here will be increasingly important in the future as more emphasis is placed on coordinated collection, sorting and reuse of waste textiles.

AlkuperäiskieliEnglanti
Artikkeli105007
Sivumäärä7
JulkaisuResources, Conservation and Recycling
Vuosikerta161
DOI - pysyväislinkit
TilaJulkaistu - lokak. 2020
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Machine vision estimates the polyester content in recyclable waste textiles'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä