Machine learning sparse tight-binding parameters for defects

Christoph Schattauer, Milica Todorović, Kunal Ghosh, Patrick Rinke, Florian Libisch*

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

3 Sitaatiot (Scopus)
38 Lataukset (Pure)

Abstrakti

We employ machine learning to derive tight-binding parametrizations for the electronic structure of defects. We test several machine learning methods that map the atomic and electronic structure of a defect onto a sparse tight-binding parameterization. Since Multi-layer perceptrons (i.e., feed-forward neural networks) perform best we adopt them for our further investigations. We demonstrate the accuracy of our parameterizations for a range of important electronic structure properties such as band structure, local density of states, transport and level spacing simulations for two common defects in single layer graphene. Our machine learning approach achieves results comparable to maximally localized Wannier functions (i.e., DFT accuracy) without prior knowledge about the electronic structure of the defects while also allowing for a reduced interaction range which substantially reduces calculation time. It is general and can be applied to a wide range of other materials, enabling accurate large-scale simulations of material properties in the presence of different defects.

AlkuperäiskieliEnglanti
Artikkeli116
Sivut1-11
Sivumäärä11
Julkaisunpj Computational Materials
Vuosikerta8
Numero1
DOI - pysyväislinkit
TilaJulkaistu - 20 toukok. 2022
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki

Sukella tutkimusaiheisiin 'Machine learning sparse tight-binding parameters for defects'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä