Machine Learning Optimization of Lignin Properties in Green Biorefineries

Joakim Löfgren, Dmitry Tarasov, Taru Koitto, Patrick Rinke, Mikhail Balakshin*, Milica Todorović

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

28 Sitaatiot (Scopus)
127 Lataukset (Pure)

Abstrakti

Novel biorefineries could transform lignin, an abundant biopolymer, from side-stream waste to high-value-Added byproducts at their site of production and with minimal experiments. Here, we report the optimization of the AquaSolv omni biorefinery for lignin using Bayesian optimization, a machine learning framework for sample-efficient and guided data collection. This tool allows us to relate the biorefinery conditions like hydrothermal pretreatment reaction severity and temperature with multiple experimental outputs, such as lignin structural features characterized using 2D nuclear magnetic resonance spectroscopy. By applying a Pareto front analysis to our models, we can find the processing conditions that simultaneously optimize the lignin yield and the amount of β-O-4 linkages for the depolymerization of lignin into platform chemicals. Our study demonstrates the potential of machine learning to accelerate the development of sustainable chemical processing techniques for targeted applications and products.

AlkuperäiskieliEnglanti
Sivut9469-9479
Sivumäärä11
JulkaisuACS Sustainable Chemistry and Engineering
Vuosikerta10
Numero29
DOI - pysyväislinkit
TilaJulkaistu - 25 heinäk. 2022
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Machine Learning Optimization of Lignin Properties in Green Biorefineries'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä