Projekteja vuodessa
Abstrakti
The solubility of carbon dioxide (CO2) in solvents is important for carbon capture and utilization technologies, with ionic liquids (ILs) being promising due to their ability to capture CO2. Since the number of possible ILs is huge, predicting CO2 solubility during solvent screening is essential. In this work, various machine learning (ML) models including, multiple linear regression, artificial neural network, and random forest, were developed by using 9864 data points covering 124 ILs and descriptors from the σ-profile for predicting CO2 solubility in ILs. The random forest model produced the best performance (R2 = 0.9754, MAE = 0.0257). We estimated the importance of the descriptors, highlighting that those with non-polar characteristics of the σ-profile are important. Lastly, we predicted CO2 solubilities for 1444 unstudied ILs. The combination of ML with the σ-profile descriptors offers great generalizability for predicting CO2 solubility in ILs. This enables IL screening for CO2 related applications.
Alkuperäiskieli | Englanti |
---|---|
Artikkeli | 121226 |
Sivumäärä | 13 |
Julkaisu | Chemical Engineering Science |
Vuosikerta | 307 |
Varhainen verkossa julkaisun päivämäärä | 24 helmik. 2025 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 15 maalisk. 2025 |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä |
Sormenjälki
Sukella tutkimusaiheisiin 'Machine learning modeling of the CO2 solubility in ionic liquids by using σ-profile descriptors'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.Projektit
- 1 Aktiivinen
-
CO2Shift, KELA: In-situ equilibrium shifting of C1 reactions by novel absorbents
Uusi-Kyyny, P. (Vastuullinen tutkija), Laakso, J.-P. (Projektin jäsen), Assadzadeh, B. (Projektin jäsen), Saad, M. (Projektin jäsen) & Nguyen, H. (Projektin jäsen)
01/09/2022 → 31/08/2026
Projekti: Academy of Finland: Other research funding