Machine Learning Methods for Emissions Prediction in Combustion Engines with Multiple Cylinders

Hoang Nguyen Khac*, Amin Modabberian, Kai Zenger, Kalle Niskanen, Anton West , Yejun Zhang, Elias Silvola, Eric Lendormy, Xiaoguo Storm, Maciej Mikulski

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliConference articleScientificvertaisarvioitu

83 Lataukset (Pure)

Abstrakti

The increasing demand of lowering the emissions of the combustion engines has led to the development of more complex engine systems. This paper presents artificial neural network (ANN) based models for estimating nitrogen oxide (NOx) and carbon dioxide (CO2) emissions from in-cylinder pressure of a maritime diesel engine. The architecture of the models is that of Multi-Layer Perceptron (MLP) and Radial Basis Function (RBF) network. The data utilized to train and test the models are obtained from a four-cylinder marine engine. The inputs of the models are chosen as the first principal components of the in-cylinder pressure and engine parameters with highest correlation to aforementioned greenhouse gases. Generalization is performed on the models during the training to avoid overfitting. The estimation result of each model is then compared. Additionally, contribution of each cylinder to the production of emissions is investigated. Results indicate that MLP has a higher accuracy in estimating both NOx and CO2 compared to RBF network. The emission levels of each cylinder for both NOx and CO2 are mostly even due to the nature of the conventional diesel engine.
AlkuperäiskieliEnglanti
Sivut3072-3078
Sivumäärä6
JulkaisuIFAC-PapersOnLine
Vuosikerta56
Numero2
DOI - pysyväislinkit
TilaJulkaistu - 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIFAC World Congress - Yokohama, Japani
Kesto: 9 heinäk. 202314 heinäk. 2023
Konferenssinumero: 22

Sormenjälki

Sukella tutkimusaiheisiin 'Machine Learning Methods for Emissions Prediction in Combustion Engines with Multiple Cylinders'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.
  • CPT Zenger: Clean Propulsion Technologies

    Zenger, K. (Vastuullinen tutkija)

    01/02/202131/12/2023

    Projekti: Business Finland: Strategic centres for science, technology and innovation (SHOK)

  • -: CPT Zenger

    Zenger, K. (Vastuullinen tutkija), Nguyen Khac, H. (Projektin jäsen) & Modabberian, A. (Projektin jäsen)

    01/02/202131/12/2023

    Projekti: Business Finland: Strategic centres for science, technology and innovation (SHOK)

Siteeraa tätä