Machine Learning Interatomic Potentials as Emerging Tools for Materials Science

Volker L. Deringer*, Miguel A. Caro, Gábor Csányi

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

9 Sitaatiot (Scopus)

Abstrakti

Atomic-scale modeling and understanding of materials have made remarkable progress, but they are still fundamentally limited by the large computational cost of explicit electronic-structure methods such as density-functional theory. This Progress Report shows how machine learning (ML) is currently enabling a new degree of realism in materials modeling: by “learning” electronic-structure data, ML-based interatomic potentials give access to atomistic simulations that reach similar accuracy levels but are orders of magnitude faster. A brief introduction to the new tools is given, and then, applications to some select problems in materials science are highlighted: phase-change materials for memory devices; nanoparticle catalysts; and carbon-based electrodes for chemical sensing, supercapacitors, and batteries. It is hoped that the present work will inspire the development and wider use of ML-based interatomic potentials in diverse areas of materials research.

AlkuperäiskieliEnglanti
Artikkeli1902765
JulkaisuAdvanced Materials
DOI - pysyväislinkit
TilaJulkaistu - 5 syyskuuta 2019
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki Sukella tutkimusaiheisiin 'Machine Learning Interatomic Potentials as Emerging Tools for Materials Science'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

  • Projektit

    Luotettavaa laskennallista sähkökemiaa tiheysfunktionaaliteoriaa sekä eritasoisia

    Caro Bayo, M.

    01/09/201731/08/2020

    Projekti: Academy of Finland: Other research funding

    Siteeraa tätä