Machine learning based modeling of disordered elemental semiconductors: understanding the atomic structure of a-Si and a-C

Miguel A. Caro*

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliReview Articlevertaisarvioitu

4 Sitaatiot (Scopus)
230 Lataukset (Pure)

Abstrakti

Disordered elemental semiconductors, most notably a-C and a-Si, are ubiquitous in a myriad of different applications. These exploit their unique mechanical and electronic properties. In the past couple of decades, density functional theory (DFT) and other quantum mechanics-based computational simulation techniques have been successful at delivering a detailed understanding of the atomic and electronic structure of crystalline semiconductors. Unfortunately, the complex structure of disordered semiconductors sets the time and length scales required for DFT simulation of these materials out of reach. In recent years, machine learning (ML) approaches to atomistic modeling have been developed that provide an accurate approximation of the DFT potential energy surface for a small fraction of the computational time. These ML approaches have now reached maturity and are starting to deliver the first conclusive insights into some of the missing details surrounding the intricate atomic structure of disordered semiconductors. In this Topical Review we give a brief introduction to ML atomistic modeling and its application to amorphous semiconductors. We then take a look at how ML simulations have been used to improve our current understanding of the atomic structure of a-C and a-Si.

AlkuperäiskieliEnglanti
Artikkeli043001
Sivumäärä26
JulkaisuSemiconductor Science and Technology
Vuosikerta38
Numero4
Varhainen verkossa julkaisun päivämäärä6 maalisk. 2023
DOI - pysyväislinkit
TilaJulkaistu - huhtik. 2023
OKM-julkaisutyyppiA2 Katsausartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Machine learning based modeling of disordered elemental semiconductors: understanding the atomic structure of a-Si and a-C'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä