Machine Learning Based Method for Estimating Energy Losses in Large-Scale Unbalanced Distribution Systems with Photovoltaics

Karar Mahmoud, Mohamed Abdelnasser, Heba Kashef, Domenec Puig, Matti Lehtonen

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

104 Lataukset (Pure)

Abstrakti

In the recent years, the penetration of photovoltaics (PV) has obviously been increased in unbalanced power distribution systems. Driven by this trend, comprehensive simulation tools are required to accurately analyze large-scale distribution systems with a fast-computational speed. In this paper, we propose an efficient method for performing time-series simulations for unbalanced power distribution systems with PV. Unlike the existing iterative methods, the proposed method is based on machine learning. Specifically, we propose a fast, reliable and accurate method for determining energy losses in distribution systems with PV. The proposed method is applied to a large-scale unbalanced distribution system (the IEEE 906 Bus European LV Test Feeder) with PV grid-connected units. The method is validated using OpenDSS software. The results demonstrate the high accuracy and computational performance of the proposed method.
AlkuperäiskieliEnglanti
Sivut157-163
Sivumäärä7
Julkaisu International Journal of Interactive Multimedia and Artificial Intelligence
Vuosikerta6
Numero4
DOI - pysyväislinkit
TilaJulkaistu - jouluk. 2020
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Machine Learning Based Method for Estimating Energy Losses in Large-Scale Unbalanced Distribution Systems with Photovoltaics'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä