Machine learning as a tool to engineer microstructures: Morphological prediction of tannin-based colloids using Bayesian surrogate models

Soo Ah Jin, Tero Kämäräinen, Patrick Rinke, Orlando J. Rojas*, Milica Todorovic*

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

2 Sitaatiot (Scopus)
40 Lataukset (Pure)

Abstrakti

Oxidized tannic acid (OTA) is a useful biomolecule with a strong tendency to form complexes with metals and proteins. In this study we open the possibility to further the application of OTA when assembled as supramolecular systems, which typically exhibit functions that correlate with shape and associated morphological features. We used machine learning (ML) to selectively engineer OTA into particles encompassing one-dimensional to three-dimensional constructs. We employed Bayesian regression to correlate colloidal suspension conditions (pH and pKa) with the size and shape of the assembled colloidal particles. Fewer than 20 experiments were found to be sufficient to build surrogate model landscapes of OTA morphology in the experimental design space, which were chemically interpretable and endowed predictive power on data. We produced multiple property landscapes from the experimental data, helping us to infer solutions that would satisfy, simultaneously, multiple design objectives. The balance between data efficiency and the depth of information delivered by ML approaches testify to their potential to engineer particles, opening new prospects in the emerging field of particle morphogenesis, impacting bioactivity, adhesion, interfacial stabilization, and other functions inherent to OTA. 

AlkuperäiskieliEnglanti
Sivut29-37
Sivumäärä9
JulkaisuMRS Bulletin
Vuosikerta47
Numero1
Varhainen verkossa julkaisun päivämäärä28 helmik. 2022
DOI - pysyväislinkit
TilaJulkaistu - 2022
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Machine learning as a tool to engineer microstructures: Morphological prediction of tannin-based colloids using Bayesian surrogate models'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä