MABAMS: Multi-Armed Bandit-Aided Mode Selection in Cooperative Buffer-Aided Relay Networks

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

1 Sitaatiot (Scopus)
57 Lataukset (Pure)

Abstrakti

In several practical networks the environment is changing fast; however, acquiring channel state information (CSI) continuously is often infeasible. In such cases, it is often feasible to infer statistical CSI at the transmitters (CSIT). In this paper, we study the mode selection problem for a cooperative network, consisting of a source, a butter-aided (BA) full-duplex (FD) relay, and a destination. In this setting, at every time frame, the network can operate in either FD mode (in different power levels), or, switch to half-duplex (HD) mode when the FD mode is not feasible. Aiming to choose the best mode of operation, a mode selection mechanism is proposed, named MABAMS, which makes use of a multi-armed bandit learning approach that exploits the acknowledgements/negative-acknowledgements (ACKs/NACKs) observations in order to extract useful information about the statistics of the channels. As a consequence, MABAMS avoids the need for CSI acquisition and exchange. We provide a performance evaluation in terms of average throughput, in order to demonstrate an interesting performance-complexity trade-off when compared to the case in which the channel statistics are known. In addition, we demonstrate significant performance improvements over the cases without any power adaptation.
AlkuperäiskieliEnglanti
Otsikko2022 IEEE Globecom Workshops (GC Wkshps)
KustantajaIEEE
Sivut1230-1235
Sivumäärä6
ISBN (elektroninen)978-1-6654-5975-4
ISBN (painettu)978-1-6654-5976-1
DOI - pysyväislinkit
TilaJulkaistu - 12 tammik. 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE Globecom Workshops - Rio de Janeiro, Brasilia
Kesto: 4 jouluk. 20228 jouluk. 2022

Conference

ConferenceIEEE Globecom Workshops
LyhennettäGC Wkshps
Maa/AlueBrasilia
KaupunkiRio de Janeiro
Ajanjakso04/12/202208/12/2022

Sormenjälki

Sukella tutkimusaiheisiin 'MABAMS: Multi-Armed Bandit-Aided Mode Selection in Cooperative Buffer-Aided Relay Networks'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä