Projekteja vuodessa
Abstrakti
We consider a refinement of the usual quasiconvexity condition of Morrey in two dimensions that allows us to prove lower semicontinuity and existence of minimizers for a class of functionals which are unbounded as the determinant vanishes and are non-polyconvex in general. This notion, that we call principal quasiconvexity, arose from the planar theory of quasiconformal mappings and mappings of finite distortion. We compare it with other quasiconvexity conditions that have appeared in the literature and provide a number of concrete examples of principally quasiconvex functionals that are not polyconvex. We also describe local conditions which combined with quasiconvexity yield principal quasiconvexity. The Stoilow factorization, that in the context of maps of integrable distortion was developed by Iwaniec and Šverák, plays a prominent role in our approach.
Alkuperäiskieli | Englanti |
---|---|
Sivut | 1608-1645 |
Sivumäärä | 38 |
Julkaisu | Communications on Pure and Applied Analysis |
Vuosikerta | 23 |
Numero | 10 |
DOI - pysyväislinkit | |
Tila | Julkaistu - lokak. 2024 |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä |
Sormenjälki
Sukella tutkimusaiheisiin 'LOWER SEMICONTINUITY, STOILOW FACTORIZATION AND PRINCIPAL MAPS'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.-
Koski Aleksis AT: Geometriset metodit elastisuudessa
Koski, A. (Vastuullinen tutkija)
01/09/2023 → 31/08/2027
Projekti: RCF Academy Research Fellow (new)
-
QUAMAP: Quasiconformal Methods in Analysis and Applications
Astala, K. (Vastuullinen tutkija)
27/08/2019 → 30/04/2021
Projekti: EU: ERC grants