LOWER SEMICONTINUITY, STOILOW FACTORIZATION AND PRINCIPAL MAPS

Kari Astala, Daniel Faraco*, André Guerra, Aleksis Koski, Jan Kristensen

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

Abstrakti

We consider a refinement of the usual quasiconvexity condition of Morrey in two dimensions that allows us to prove lower semicontinuity and existence of minimizers for a class of functionals which are unbounded as the determinant vanishes and are non-polyconvex in general. This notion, that we call principal quasiconvexity, arose from the planar theory of quasiconformal mappings and mappings of finite distortion. We compare it with other quasiconvexity conditions that have appeared in the literature and provide a number of concrete examples of principally quasiconvex functionals that are not polyconvex. We also describe local conditions which combined with quasiconvexity yield principal quasiconvexity. The Stoilow factorization, that in the context of maps of integrable distortion was developed by Iwaniec and Šverák, plays a prominent role in our approach.

AlkuperäiskieliEnglanti
Sivut1608-1645
Sivumäärä38
JulkaisuCommunications on Pure and Applied Analysis
Vuosikerta23
Numero10
DOI - pysyväislinkit
TilaJulkaistu - lokak. 2024
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'LOWER SEMICONTINUITY, STOILOW FACTORIZATION AND PRINCIPAL MAPS'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä