Lower semicontinuity and pointwise behavior of supersolutions for some doubly nonlinear nonlocal parabolic p-Laplace equations

Agnid Banerjee, Prashanta Garain, Juha Kinnunen*

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

1 Sitaatiot (Scopus)
4 Lataukset (Pure)

Abstrakti

We discuss pointwise behavior of weak supersolutions for a class of doubly nonlinear parabolic fractional p-Laplace equations which includes the fractional parabolic p-Laplace equation and the fractional porous medium equation. More precisely, we show that weak supersolutions have lower semicontinuous representative. We also prove that the semicontinuous representative at an instant of time is determined by the values at previous times. This gives a pointwise interpretation for a weak supersolution at every point. The corresponding results hold true also for weak subsolutions. Our results extend some recent results in the local parabolic case, and in the nonlocal elliptic case, to the nonlocal parabolic case. We prove the required energy estimates and measure theoretic De Giorgi type lemmas in the fractional setting.

AlkuperäiskieliEnglanti
Artikkeli2250032
JulkaisuCommunications in Contemporary Mathematics
Vuosikerta25
Numero8
Varhainen verkossa julkaisun päivämäärä20 kesäk. 2022
DOI - pysyväislinkit
TilaSähköinen julkaisu (e-pub) ennen painettua julkistusta - 20 kesäk. 2022
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki

Sukella tutkimusaiheisiin 'Lower semicontinuity and pointwise behavior of supersolutions for some doubly nonlinear nonlocal parabolic p-Laplace equations'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä