Long-term fuel retention in JET ITER-like wall

Tutkimustuotos: Lehtiartikkelivertaisarvioitu


  • JET contributors


  • University of Helsinki
  • Culham Sci Ctr, Culham Science Centre, CCFE
  • VTT Tech Res Ctr Finland Ltd, VTT Technical Research Center Finland, QTF Ctr Excellence
  • Univ Lisbon, Universidade de Lisboa, Inst Super Tecn, Inst Plasmas & Fusao Nucl
  • Univ Lisbon, Universidade de Lisboa, Nucl Inst Super Tecn, Ctr Ciencias & Tecnol
  • Forschungszentrum Julich GmbH, Helmholtz Association, Research Center Julich, Inst Energie & Klimaforsch Plasmaphys
  • Natl Res Nucl Univ MEPhl, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
  • Max Planck Inst Plasma Phys, Max Planck Society
  • Royal Inst Technol, Royal Institute of Technology, CHE Chem Surface Corros Sci
  • Princeton Plasma Phys Lab, Princeton Physics Laboratory, Princeton University, United States Department of Energy (DOE)
  • Uppsala University Hospital
  • European Commiss
  • Chinese Academy of Social Sciences
  • Natl Fus Res Inst, National Fusion Research Institute (NFRI)
  • ITER Org
  • Univ Politecn Madrid, Universidad Politecnica de Madrid, Grp I2A2
  • CNRS, Centre National de la Recherche Scientifique (CNRS), CNRS - Institute for Engineering & Systems Sciences (INSIS), Ecole Polytechnique, Sorbonne Universite, UMR 7648, Ecole Polytech
  • Inst Plasma Res, Institute for Plasma Research (IPR)
  • Forsch Zentrum Julich GmbH, Helmholtz Association, Research Center Julich, Inst Energie & Klimaforsch Plasmaphys
  • Univ Elect Sci & Technol China, University of Electronic Science & Technology of China


Post-mortem studies with ion beam analysis, thermal desorption, and secondary ion mass spectrometry have been applied for investigating the long-term fuel retention in the JET ITER-like wall components. The retention takes place via implantation and co-deposition, and the highest retention values were found to correlate with the thickness of the deposited impurity layers. From the total amount of retained D fuel over half was detected in the divertor region. The majority of the retained D is on the top surface of the inner divertor, whereas the least retention was measured in the main chamber on the mid-plane of the inner wall limiter. The recessed areas of the inner wall showed significant contribution to the main chamber total retention. Thermal desorption spectroscopy analysis revealed the energetic T from DD reactions being implanted in the divertor. The total T inventory was assessed to be >0.3 mg.


JulkaisuPhysica Scripta
TilaJulkaistu - 20 helmikuuta 2016
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu
TapahtumaInternational Conference on Plasma-Facing Materials and Components for Fusion Applications - Aix-en-Provence, Ranska
Kesto: 18 toukokuuta 201522 toukokuuta 2015
Konferenssinumero: 15

ID: 38666355