Projekteja vuodessa
Abstrakti
Longitudinal datasets measured repeatedly over time from individual subjects, arise in many biomedical, psychological, social, and other studies. A common approach to analyse high-dimensional data that contains missing values is to learn a low-dimensional representation using variational autoencoders (VAEs). However, standard VAEs assume that the learnt representations are i.i.d., and fail to capture the correlations between the data samples. We propose the Longitudinal VAE (L-VAE), that uses a multi-output additive Gaussian process (GP) prior to extend the VAE's capability to learn structured low-dimensional representations imposed by auxiliary covariate information, and derive a new KL divergence upper bound for such GPs. Our approach can simultaneously accommodate both time-varying shared and random effects, produce structured low-dimensional representations, disentangle effects of individual covariates or their interactions, and achieve highly accurate predictive performance. We compare our model against previous methods on synthetic as well as clinical datasets, and demonstrate the state-of-theart performance in data imputation, reconstruction, and long-term prediction tasks.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | 24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS) |
Toimittajat | A Banerjee, K Fukumizu |
Kustantaja | Microtome Publishing |
Sivumäärä | 11 |
Tila | Julkaistu - 2021 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | International Conference on Artificial Intelligence and Statistics - Virtual, Online Kesto: 13 huhtik. 2021 → 15 huhtik. 2021 Konferenssinumero: 24 |
Julkaisusarja
Nimi | Proceedings of Machine Learning Research |
---|---|
Kustantaja | MICROTOME PUBLISHING |
Vuosikerta | 130 |
ISSN (painettu) | 2640-3498 |
Conference
Conference | International Conference on Artificial Intelligence and Statistics |
---|---|
Lyhennettä | AISTATS |
Kaupunki | Virtual, Online |
Ajanjakso | 13/04/2021 → 15/04/2021 |
Sormenjälki
Sukella tutkimusaiheisiin 'Longitudinal Variational Autoencoder'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.Projektit
- 2 Päättynyt
-
Heal-Art jatko: Immunoregulation and Therapeutic Precision in Rheumatoid Arthritis
Lähdesmäki, H., Osmala, M., Dumitrescu, A., Lankinen, A., Halla-aho, V. & Jokinen, E.
01/01/2021 → 31/12/2022
Projekti: Academy of Finland: Other research funding
-
Molekyylimekanismien analysointi yhden solun tasolla
Lähdesmäki, H., Dumitrescu, A., Laajala, E., Osmala, M., Intosalmi, J., Jokinen, E., Somani, J., Gadd, C., Tikhonov, G., Iakovlev, V., Halla-aho, V., Lankinen, A. & Korpela, D.
01/09/2017 → 31/08/2021
Projekti: Academy of Finland: Other research funding