Abstrakti
This paper presents a comprehensive approach for computing nontrivial equilibria of autonomous Long Short-Term Memory neural networks using a homotopy formulation. Through simulations, it is shown that the eigenvalues of the linearized models around these nontrivial equilibria tend to move closer to the unit circle as the complexity of the training data increases. This provides insights into the dynamical properties of the LSTM neural networks.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Spatiotemporal Workshop, 32nd Annual Conference on Neural Information Processing Systems (NeurIPS) |
Sivumäärä | 5 |
Tila | Julkaistu - 30 syysk. 2018 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |