Lombard speech synthesis using transfer learning in a Tacotron text-to-speech system

Bajibabu Bollepalli, Lauri Juvela, Paavo Alku

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

16 Sitaatiot (Scopus)
716 Lataukset (Pure)

Abstrakti

Currently, there is increasing interest to use sequence-to-sequence models in text-to-speech (TTS) synthesis with attention like that in Tacotron models. These models are end-to-end, meaning that they learn both co-articulation and duration properties directly from text and speech. Since these models are entirely data-driven, they need large amounts of data to generate synthetic speech of good quality. However, in challenging speaking styles, such as Lombard speech, it is difficult to record sufficiently large speech corpora. Therefore, we propose a transfer learning method to adapt a TTS system of normal speaking style to Lombard style. We also experiment with a WaveNet vocoder along with a traditional vocoder (WORLD) in the synthesis of Lombard speech. The subjective and objective evaluation results indicated that the proposed adaptation system coupled with the WaveNet vocoder clearly outperformed the conventional deep neural network based TTS system in the synthesis of Lombard speech
AlkuperäiskieliEnglanti
OtsikkoProceedings of Interspeech
KustantajaInternational Speech Communication Association (ISCA)
Sivut2833-2837
DOI - pysyväislinkit
TilaJulkaistu - 2019
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaInterspeech - Graz, Itävalta
Kesto: 15 syysk. 201919 syysk. 2019
https://www.interspeech2019.org/

Julkaisusarja

NimiInterspeech - Annual Conference of the International Speech Communication Association
ISSN (elektroninen)2308-457X

Conference

ConferenceInterspeech
Maa/AlueItävalta
KaupunkiGraz
Ajanjakso15/09/201919/09/2019
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'Lombard speech synthesis using transfer learning in a Tacotron text-to-speech system'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä