Projekteja vuodessa
Abstrakti
Machine learning models are increasingly being deployed onto edge devices, for example, for smart sensing, reinforcing the need for reliable and effi- cient modeling families that can perform a variety of tasks in an uncertain world (e.g., classification, outlier detection) without re-deploying the model. Probabilistic circuits (PCs) offer a promising avenue for such scenarios as they support efficient and exact computation of various probabilistic inference tasks by design, in addition to having a sparse structure. A critical challenge towards hardware acceleration of PCs on edge devices is the high computational cost associated with mul- tiplications in the model. In this work, we propose the first approximate computing framework for energy-efficient PC computation. For this, we leverage addition-as-int approximate multipliers, which are significantly more energy-efficient than regular floating-point multipliers, while preserving computation accuracy. We analyze the expected approximation error and show through hardware simulation results that our approach leads to a significant reduction in energy consumption with low approximation error and provides a remedy for hardware acceleration of general-purpose probabilistic models.
Alkuperäiskieli | Englanti |
---|---|
Sivut | 1-6 |
Sivumäärä | 6 |
Tila | Julkaistu - 13 heinäk. 2023 |
OKM-julkaisutyyppi | Ei sovellu |
Tapahtuma | Workshop on Tractable Probabilistic Modeling - Pittsburgh, Pittsburgh, Yhdysvallat Kesto: 4 elok. 2023 → 4 elok. 2023 Konferenssinumero: 6 https://groups.google.com/g/ml-news/c/YVmgSlfJU6Q?pli=1 |
Workshop
Workshop | Workshop on Tractable Probabilistic Modeling |
---|---|
Lyhennettä | TPM |
Maa/Alue | Yhdysvallat |
Kaupunki | Pittsburgh |
Ajanjakso | 04/08/2023 → 04/08/2023 |
www-osoite |
Sormenjälki
Sukella tutkimusaiheisiin 'Logarithm-Approximate Floating-Point Multiplier for Hardware-efficient Inference in Probabilistic Circuits'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.-
SUSTAIN: Smart Building Sensitive To Daily Sentiment
Sigg, S. (Vastuullinen tutkija)
01/10/2022 → 31/03/2026
Projekti: EU: Framework programmes funding
-
Trapp Martin: Exploiting Probabilistic Circuits for Stochastic Processes and Deep Learning
Trapp, M. (Vastuullinen tutkija)
01/09/2022 → 31/08/2025
Projekti: Academy of Finland: Other research funding
-
WHISTLE: When integrated systems gain life experience: towards self-learning circuits with resource-efficient embedded artificial intelligence
Andraud, M. (Vastuullinen tutkija), Adam, K. (Projektin jäsen), Yao, L. (Projektin jäsen), Periasamy, K. (Projektin jäsen), Leslin, J. (Projektin jäsen) & Bhowmick, S. (Projektin jäsen)
01/09/2020 → 31/08/2024
Projekti: Academy of Finland: Other research funding
Laitteet
-
Aalto Electronics-ICT
Ryynänen, J. (Manager)
Elektroniikan ja nanotekniikan laitosLaitteistot/tilat: Facility