Liquid-chromatography retention order prediction for metabolite identification

Tutkimustuotos: Lehtiartikkeli

Tutkijat

Organisaatiot

  • Friedrich Schiller University Jena

Kuvaus

Motivation: Liquid Chromatography (LC) followed by tandem Mass Spectrometry (MS/MS) is one of the predominant methods for metabolite identification. In recent years, machine learning has started to transform the analysis of tandem mass spectra and the identification of small molecules. In contrast, LC data is rarely used to improve metabolite identification, despite numerous published methods for retention time prediction using machine learning.

Results: We present a machine learning method for predicting the retention order of molecules; that is, the order in which molecules elute from the LC column. Our method has important advantages over previous approaches: We show that retention order is much better conserved between instruments than retention time. To this end, our method can be trained using retention time measurements from different LC systems and configurations without tedious pre-processing, significantly increasing the amount of available training data. Our experiments demonstrate that retention order prediction is an effective way to learn retention behaviour of molecules from heterogeneous retention time data. Finally, we demonstrate how retention order prediction and MS/MS-based scores can be combined for more accurate metabolite identifications when analyzing a complete LC-MS/MS run.

Yksityiskohdat

AlkuperäiskieliEnglanti
Sivut875-883
Sivumäärä9
JulkaisuBioinformatics
Vuosikerta34
Numero17
TilaJulkaistu - 1 syyskuuta 2018
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu
TapahtumaEuropean Conference on Computational Biology - Athens, Kreikka
Kesto: 8 syyskuuta 201812 syyskuuta 2018
Konferenssinumero: 17

Lataa tilasto

Ei tietoja saatavilla

ID: 28288980