Link Prediction with Continuous-Time Classical and Quantum Walks

Mark Goldsmith*, Harto Saarinen*, Guillermo García-Pérez, Joonas Malmi, Matteo A.C. Rossi, Sabrina Maniscalco

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

3 Sitaatiot (Scopus)
61 Lataukset (Pure)

Abstrakti

Protein–protein interaction (PPI) networks consist of the physical and/or functional interactions between the proteins of an organism, and they form the basis for the field of network medicine. Since the biophysical and high-throughput methods used to form PPI networks are expensive, time-consuming, and often contain inaccuracies, the resulting networks are usually incomplete. In order to infer missing interactions in these networks, we propose a novel class of link prediction methods based on continuous-time classical and quantum walks. In the case of quantum walks, we examine the usage of both the network adjacency and Laplacian matrices for specifying the walk dynamics. We define a score function based on the corresponding transition probabilities and perform tests on six real-world PPI datasets. Our results show that continuous-time classical random walks and quantum walks using the network adjacency matrix can successfully predict missing protein–protein interactions, with performance rivalling the state-of-the-art.

AlkuperäiskieliEnglanti
Artikkeli730
Sivut1-15
Sivumäärä15
JulkaisuEntropy
Vuosikerta25
Numero5
DOI - pysyväislinkit
TilaJulkaistu - toukok. 2023
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Link Prediction with Continuous-Time Classical and Quantum Walks'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä