Linear TDOA-based Measurements for Distributed Estimation and Localized Tracking

Mohammadreza Doostmohammadian, Themistoklis Charalambous

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference contributionScientificvertaisarvioitu

1 Sitaatiot (Scopus)

Abstrakti

We propose a linear time-difference-of-arrival (TDOA) measurement model to improve distributed estimation performance for localized target tracking. We design distributed filters over sparse (possibly large-scale) communication networks using consensus-based data-fusion techniques. The proposed distributed and localized tracking protocols considerably reduce the sensor network's required connectivity and communication rate. We, further, consider κ-redundant observability and fault-tolerant design in case of losing communication links or sensor nodes. We present the minimal conditions on the remaining sensor network (after link/node removal) such that the distributed observability is still preserved and, thus, the sensor network can track the (single) maneuvering target. The motivation is to reduce the communication load versus the processing load, as the computational units are, in general, less costly than the communication devices. We evaluate the tracking performance via simulations in MATLAB.

AlkuperäiskieliEnglanti
Otsikko2022 IEEE 95th Vehicular Technology Conference - Spring, VTC 2022-Spring - Proceedings
KustantajaIEEE
Sivumäärä6
ISBN (elektroninen)978-1-6654-8243-1
DOI - pysyväislinkit
TilaJulkaistu - 2022
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaIEEE Vehicular Technology Conference - Helsinki, Suomi
Kesto: 19 kesäk. 202222 kesäk. 2022
Konferenssinumero: 95

Julkaisusarja

NimiIEEE Vehicular Technology Conference
ISSN (painettu)1090-3038
ISSN (elektroninen)2577-2465

Conference

ConferenceIEEE Vehicular Technology Conference
LyhennettäVTC
Maa/AlueSuomi
KaupunkiHelsinki
Ajanjakso19/06/202222/06/2022

Sormenjälki

Sukella tutkimusaiheisiin 'Linear TDOA-based Measurements for Distributed Estimation and Localized Tracking'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä