Likelihood Maximization of Lifetime Distributions With Bathtub-Shaped Failure Rate

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

Abstrakti

Equipment lifetime distributions with bathtub-shaped failure rate can be fitted to data by the maximum likelihood criterion. In the literature, a commonly used method is to find a point in the parameter space where the partial derivatives of the log-likelihood function are zero. As the log-likelihood function is typically nonconvex, this approach may yield a suboptimal fit. In this work, we maximize the log-likelihood function, using a multistart of 100 optimization procedures, by three nonlinear optimization algorithms: 1) Nelder–Mead with adaptive parameters; 2) sequential least squares quadratic programming (SLSQP); 3) limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm with box constraints (L-BFGS-B). We perform a systematic study of refitting ten key lifetime distributions with bathtub-shaped failure rate from the literature to two widely studied datasets. The multistart nonlinear optimization yields better fits than those reported in the literature in 14 out of 19 distribution-dataset pairs, for which reference parameters are available. Based on the results, if gradient information of the log-likelihood function is available, our recommended optimization algorithm for the purpose is SLSQP.
AlkuperäiskieliEnglanti
Sivut1-15
Sivumäärä15
JulkaisuIEEE TRANSACTIONS ON RELIABILITY
Varhainen verkossa julkaisun päivämäärä11 elok. 2022
DOI - pysyväislinkit
TilaSähköinen julkaisu (e-pub) ennen painettua julkistusta - 11 elok. 2022
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki

Sukella tutkimusaiheisiin 'Likelihood Maximization of Lifetime Distributions With Bathtub-Shaped Failure Rate'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä