Projekteja vuodessa
Abstrakti
In recent years, surrogate models have been successfully used in likelihood-free inference to decrease the number of simulator evaluations. The current state-of-the-art performance for this task has been achieved by Bayesian Optimization with Gaussian Processes (GPs). While this combination works well for unimodal target distributions, it is restricting the flexibility and applicability of Bayesian Optimization for accelerating likelihood-free inference more generally. We address this problem by proposing a Deep Gaussian Process (DGP) surrogate model that can handle more irregularly behaved target distributions. Our experiments show how DGPs can outperform GPs on objective functions with multimodal distributions and maintain a comparable performance in unimodal cases. This confirms that DGPs as surrogate models can extend the applicability of Bayesian Optimization for likelihood-free inference (BOLFI), while adding computational overhead that remains negligible for computationally intensive simulators.
Alkuperäiskieli | Englanti |
---|---|
Tila | Jätetty - 23 elokuuta 2021 |
OKM-julkaisutyyppi | Ei oikeutettu |
Sormenjälki
Sukella tutkimusaiheisiin 'Likelihood-Free Inference with Deep Gaussian Processes'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.-
Todellisuuskuilun ylitys autonomisessa oppimisessa
Kaski, S., Kulkarni, T., Filstroff, L., Mallasto, A., Hämäläinen, A., Khoshvishkaie, A. & Mallasto, A.
01/01/2020 → 31/12/2022
Projekti: Academy of Finland: Other research funding
-
FIT: Federoitu todennäköisyysmallinnus heterogeenisille ohjelmoitaville IoT-järjestelmille
Kaski, S., Kulkarni, T., Mallasto, A., Jälkö, J., Prediger, L. & Mallasto, A.
04/09/2019 → 31/12/2022
Projekti: Academy of Finland: Other research funding
-
FCAI: Suomen tekoälykeskus
01/01/2019 → 31/12/2022
Projekti: Academy of Finland: Other research funding