Abstrakti

Likelihood-free inference (LFI) has been successfully applied to state-space models, where the likelihood of observations is not available but synthetic observations generated by a black-box simulator can be used for inference instead. However, much of the research up to now has been restricted to cases in which a model of state transition dynamics can be formulated in advance and the simulation budget is unrestricted. These methods fail to address the problem of state inference when simulations are computationally expensive and the Markovian state transition dynamics are undefined. The approach proposed in this manuscript enables LFI of states with a limited number of simulations by estimating the transition dynamics and using state predictions as proposals for simulations. In the experiments with non-stationary user models, the proposed method demonstrates significant improvement in accuracy for both state inference and prediction, where a multi-output Gaussian process is used for LFI of states and a Bayesian neural network as a surrogate model of transition dynamics.

AlkuperäiskieliEnglanti
Artikkeli27
JulkaisuSTATISTICS AND COMPUTING
Vuosikerta34
Numero1
Varhainen verkossa julkaisun päivämäärä3 marrask. 2023
DOI - pysyväislinkit
TilaJulkaistu - helmik. 2024
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Likelihood-free inference in state-space models with unknown dynamics'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä