Projekteja vuodessa
Abstrakti
Grasping complex computing concepts often poses a challenge for students who struggle to anchor these new ideas to familiar experiences and understandings. To help with this, a good analogy can bridge the gap between unfamiliar concepts and familiar ones, providing an engaging way to aid understanding. However, creating effective educational analogies is difficult even for experienced instructors. We investigate to what extent large language models (LLMs), specifically ChatGPT, can provide access to personally relevant analogies on demand. Focusing on recursion, a challenging threshold concept, we conducted an investigation analyzing the analogies generated by more than 350 first-year computing students. They were provided with a code snippet and tasked to generate their own recursion-based analogies using ChatGPT, optionally including personally relevant topics in their prompts. We observed a great deal of diversity in the analogies produced with student-prescribed topics, in contrast to the otherwise generic analogies, highlighting the value of student creativity when working with LLMs. Not only did students enjoy the activity and report an improved understanding of recursion, but they described more easily remembering analogies that were personally and culturally relevant.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | ITiCSE 2024 - Proceedings of the 2024 Conference Innovation and Technology in Computer Science Education |
Kustantaja | ACM |
Sivut | 122-128 |
Sivumäärä | 7 |
ISBN (elektroninen) | 979-8-4007-0600-4 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 3 heinäk. 2024 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | Annual Conference on Innovation and Technology in Computer Science Education - Università degli Studi di Milano, Milan, Italia Kesto: 8 heinäk. 2024 → 10 heinäk. 2024 Konferenssinumero: 29 https://iticse.acm.org/2024/ |
Conference
Conference | Annual Conference on Innovation and Technology in Computer Science Education |
---|---|
Lyhennettä | ITiCSE |
Maa/Alue | Italia |
Kaupunki | Milan |
Ajanjakso | 08/07/2024 → 10/07/2024 |
www-osoite |
Sormenjälki
Sukella tutkimusaiheisiin '"Like a Nesting Doll" : Analyzing Recursion Analogies Generated by CS Students Using Large Language Models'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.Projektit
- 1 Aktiivinen
-
Leinonen Juho /AT tot.: Large Language Models for Computing Education
Leinonen, J. (Vastuullinen tutkija) & Logacheva, E. (Projektin jäsen)
01/09/2023 → 31/08/2027
Projekti: Academy of Finland: Other research funding