Abstrakti

Using light to drive polymer actuators can enable spatially selective complex motions, offering a wealth of opportunities for wireless control of soft robotics and active textiles. Here, the integration of photothermal components is reported into shape memory polymer actuators. The fabricated twist-coiled artificial muscles show on-command multidirectional bending, which can be controlled by both the illumination intensity, as well as the chirality, of the prepared artificial muscles. Importantly, the direction in which these artificial muscles bend does not depend on intrinsic material characteristics. Instead, this directionality is achieved by localized untwisting of the actuator, driven by selective irradiation. The reaction times of this bending system are significantly – at least two orders of magnitude – faster than heliotropic biological systems, with a response time up to one second. The programmability of the artificial muscles is further demonstrated for selective, reversible, and sustained actuation when integrated in butterfly-shaped textiles, along with the capacity to autonomously orient toward a light source. This functionality is maintained even on a rotating platform, with angular velocities of 6°/s, independent of the rotation direction. These attributes collectively represent a breakthrough in the field of artificial muscles, intended to adaptive shape-changing soft systems and biomimetic technologies.

AlkuperäiskieliEnglanti
Artikkeli2405917
Sivumäärä9
JulkaisuAdvanced Materials
DOI - pysyväislinkit
TilaSähköinen julkaisu (e-pub) ennen painettua julkistusta - 23 heinäk. 2024
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Light-Driven Multidirectional Bending in Artificial Muscles'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä