Leveraging Probabilistic Circuits for Nonparametric Multi-Output Regression

Zhongjie Yu*, Mingye Zhu, Martin Trapp, Arseny Skryagin, Kristian Kersting

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

31 Lataukset (Pure)

Abstrakti

Inspired by recent advances in the field of expert-based approximations of Gaussian processes (GPs), we present an expert-based approach to large-scale
multi-output regression using single-output GP experts. Employing a deeply structured mixture of single-output GPs encoded via a probabilistic circuit allows us to capture correlations between multiple output dimensions accurately. By recursively partitioning the covariate space and the output space, posterior inference in our model reduces to inference on single-output GP experts, which only need to be conditioned on a small subset of the observations. We show that inference can be performed exactly and efficiently in our model, that it can capture correlations between output dimensions and, hence, often outperforms approaches that do not incorporate inter-output correlations, as demonstrated on several data sets in terms of the negative log predictive density.
AlkuperäiskieliEnglanti
OtsikkoProceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence
KustantajaJMLR
Sivut2008-2018
Sivumäärä11
TilaJulkaistu - 2021
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaConference on Uncertainty in Artificial Intelligence - Virtual, Online
Kesto: 27 heinäk. 202129 heinäk. 2021
https://auai.org/uai2021/

Julkaisusarja

NimiProceedings of Machine Learning Research
KustantajaPMLR
Vuosikerta161
ISSN (elektroninen)2640-3498

Conference

ConferenceConference on Uncertainty in Artificial Intelligence
LyhennettäUAI
KaupunkiVirtual, Online
Ajanjakso27/07/202129/07/2021
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'Leveraging Probabilistic Circuits for Nonparametric Multi-Output Regression'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä