Abstrakti
Given a family of lattice polytopes, a common endeavor in Ehrhart theory is the classification of those polytopes in the family that are Gorenstein, or more generally level. In this article, we consider these questions for s-lecture hall polytopes, which are a family of simplices arising from s-lecture hall partitions. In particular, we provide concrete classifications for both of these properties purely in terms of sinversion sequences. Moreover, for a large subfamily of s-lecture hall polytopes, we provide a more geometric classification of the Gorenstein property in terms of its tangent cones. We then show how one can use the classification of level s-lecture hall polytopes to construct infinite families of level s-lecture hall polytopes, and to describe level s-lecture hall polytopes in small dimensions.
Alkuperäiskieli | Englanti |
---|---|
Artikkeli | P3.50 |
Sivut | 1-23 |
Sivumäärä | 23 |
Julkaisu | Electronic Journal of Combinatorics |
Vuosikerta | 27 |
Numero | 3 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 4 syysk. 2020 |
OKM-julkaisutyyppi | A1 Julkaistu artikkeli, soviteltu |