Projekteja vuodessa
Abstrakti
We propose a novel method for exploring the dynamics of physically based animated characters, and learning a task-agnostic action space that makes movement optimization easier. Like several previous papers, we parameterize actions as target states, and learn a short-horizon goal-conditioned low-level control policy that drives the agent's state towards the targets. Our novel contribution is that with our exploration data, we are able to learn the low-level policy in a generic manner and without any reference movement data. Trained once for each agent or simulation environment, the policy improves the efficiency of optimizing both trajectories and high-level policies across multiple tasks and optimization algorithms. We also contribute novel visualizations that show how using target states as actions makes optimized trajectories more robust to disturbances; this manifests as wider optima that are easy to find. Due to its simplicity and generality, our proposed approach should provide a building block that can improve a large variety of movement optimization methods and applications.
Alkuperäiskieli | Englanti |
---|---|
Sivut | 4700-4712 |
Julkaisu | IEEE Transactions on Visualization and Computer Graphics |
Vuosikerta | 28 |
Numero | 12 |
Varhainen verkossa julkaisun päivämäärä | 2021 |
DOI - pysyväislinkit | |
Tila | Julkaistu - jouluk. 2022 |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä |
Sormenjälki
Sukella tutkimusaiheisiin 'Learning Task-Agnostic Action Spaces for Movement Optimization'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.Projektit
- 1 Päättynyt
-
IMAI: Vuorovaikutteinen liiketekoäly
Hämäläinen, P. (Vastuullinen tutkija), Babadi, A. (Projektin jäsen), Rajamäki, J. (Projektin jäsen), Kaos, M. (Projektin jäsen), Takatalo, J. (Projektin jäsen), Toikka, J. (Projektin jäsen), Ikkala, A. (Projektin jäsen) & Naderi, K. (Projektin jäsen)
01/09/2016 → 31/08/2020
Projekti: Academy of Finland: Other research funding