Learning Structure-Aware Representations of Dependent Types

Kokos Kogkalidis, Orestis Melkonian, Jean-Philippe Bernardy

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaPosterScientificvertaisarvioitu

Abstrakti

Agda is a dependently-typed programming language and a proof assistant, pivotal in proof formalization and programming language theory. This paper extends the Agda ecosystem into machine learning territory, and, vice versa, makes Agda-related resources available to machine learning practitioners. We introduce and release a novel dataset of Agda program-proofs that is elaborate and extensive enough to support various machine learning applications -- the first of its kind. Leveraging the dataset's ultra-high resolution, which details proof states at the sub-type level, we propose a novel neural architecture targeted at faithfully representing dependently-typed programs on the basis of structural rather than nominal principles. We instantiate and evaluate our architecture in a premise selection setup, where it achieves promising initial results, surpassing strong baselines.
AlkuperäiskieliEnglanti
TilaJulkaistu - 2024
OKM-julkaisutyyppiEi sovellu
TapahtumaConference on Neural Information Processing Systems - Vancouver, Canada, Vancouver , Kanada
Kesto: 10 jouluk. 202415 jouluk. 2024
Konferenssinumero: 38
https://neurips.cc/Conferences/2024

Conference

ConferenceConference on Neural Information Processing Systems
LyhennettäNeurIPS
Maa/AlueKanada
KaupunkiVancouver
Ajanjakso10/12/202415/12/2024
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'Learning Structure-Aware Representations of Dependent Types'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä