Abstrakti
We introduce a novel grid-independent model for learning partial differential equations (PDEs) from noisy and partial observations on irregular spatiotemporal grids. We propose a space-time continuous latent neural PDE model with an efficient probabilistic framework and a novel encoder design for improved data efficiency and grid independence. The latent state dynamics are governed by a PDE model that combines the collocation method and the method of lines. We employ amortized variational inference for approximate posterior estimation and utilize a multiple shooting technique for enhanced training speed and stability. Our model demonstrates state-of-the-art performance on complex synthetic and real-world datasets, overcoming limitations of previous approaches and effectively handling partially-observed data. The proposed model outperforms recent methods, showing its potential to advance data-driven PDE modeling and enabling robust, grid-independent modeling of complex partially-observed dynamic processes.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Advances in Neural Information Processing Systems 36 (NeurIPS 2023) |
Kustantaja | Curran Associates Inc. |
Sivumäärä | 24 |
ISBN (elektroninen) | 978-1-7138-9992-1 |
Tila | Julkaistu - 2024 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | Conference on Neural Information Processing Systems - Ernest N. Morial Convention Center, New Orleans, Yhdysvallat Kesto: 10 jouluk. 2023 → 16 jouluk. 2023 Konferenssinumero: 37 https://nips.cc/ |
Julkaisusarja
Nimi | Advances in Neural Information Processing Systems |
---|---|
Kustantaja | Morgan Kaufmann Publishers |
Vuosikerta | 36 |
ISSN (painettu) | 1049-5258 |
Conference
Conference | Conference on Neural Information Processing Systems |
---|---|
Lyhennettä | NeurIPS |
Maa/Alue | Yhdysvallat |
Kaupunki | New Orleans |
Ajanjakso | 10/12/2023 → 16/12/2023 |
www-osoite |