Learning Space-Time Continuous Latent Neural PDEs from Partially Observed States

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

Abstrakti

We introduce a novel grid-independent model for learning partial differential equations (PDEs) from noisy and partial observations on irregular spatiotemporal grids. We propose a space-time continuous latent neural PDE model with an efficient probabilistic framework and a novel encoder design for improved data efficiency and grid independence. The latent state dynamics are governed by a PDE model that combines the collocation method and the method of lines. We employ amortized variational inference for approximate posterior estimation and utilize a multiple shooting technique for enhanced training speed and stability. Our model demonstrates state-of-the-art performance on complex synthetic and real-world datasets, overcoming limitations of previous approaches and effectively handling partially-observed data. The proposed model outperforms recent methods, showing its potential to advance data-driven PDE modeling and enabling robust, grid-independent modeling of complex partially-observed dynamic processes.

AlkuperäiskieliEnglanti
OtsikkoAdvances in Neural Information Processing Systems 36 (NeurIPS 2023)
KustantajaCurran Associates Inc.
Sivumäärä24
ISBN (elektroninen)978-1-7138-9992-1
TilaJulkaistu - 2024
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaConference on Neural Information Processing Systems - Ernest N. Morial Convention Center, New Orleans, Yhdysvallat
Kesto: 10 jouluk. 202316 jouluk. 2023
Konferenssinumero: 37
https://nips.cc/

Julkaisusarja

NimiAdvances in Neural Information Processing Systems
KustantajaMorgan Kaufmann Publishers
Vuosikerta36
ISSN (painettu)1049-5258

Conference

ConferenceConference on Neural Information Processing Systems
LyhennettäNeurIPS
Maa/AlueYhdysvallat
KaupunkiNew Orleans
Ajanjakso10/12/202316/12/2023
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'Learning Space-Time Continuous Latent Neural PDEs from Partially Observed States'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä